
SOFTWARE EVOLUTION AND THE FAULT PROCESS

Allen P. Nikora
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109-8099

Allen. P.Nikora@ jpl.nasa.gov

John C. Munson
Computer Science Department

University of Idaho
MOSCOW, ID 83844-1010
jmunson @cs.uidaho.edu

ABSTRACT

In developing a software system, we would like to
estimate the way in which the fault content changes
during its development, as well determine the locations
having the highest concentration of faults. In the phases
prior to test, however, there may be very little direct in-
formation regarding the number and location of faults.
This lack of direct information requires developing a
fault surrogate from which the number offaults and their
location can be estimated. We develop a fault surrogate

based on changes in the fault index, a synthetic measure
which has been successfully used as a fault surrogate in
previous work. We show that changes in the fault index
can be used to estimate the rates at which faults are in-
serted into a system between successive revisions. We
can then continuously monitor the total number offaults
inserted into a system, the residual fault content, and
identtfy those portions of a system requiring the applica-
tion of additional fault detection and removal resources. ,

1. INTRODUCTION

Over a numberof yearsof study,we can now estab-
lish a distinct relationship between software faults and
certain aspects of software complexity. When a software
system consisting of many distinct software modules is
built for the first time, we have little or no direct infor-
mation as to the location of faults in the code. Some of
the modules will have far more faults in them then do
others. We do, however, now know that the number of
faults in a module is highly correlated with certain soft-
ware attributes that may be measured. This means that
we can measure the software on these specific attributes
and have some reasonable notion as to the degree to
which the modules are fault prone [Muns90, Muns96].

In the absence of information as to the specific lo-
cation of software faults, we have successfully used a
derived metric, the fault index measure, as a fault surro-
gate. That is, if the fault index of a module is large, then
it will likely have a large number of latent faults. If, on
the other hand, the fault index of a module is small, then
it will tend to have fewer faults. As the software system
evolves through a number of sequential builds, faults
will bc identified and the code will be changed in an
attempt to eliminate the identified faults. The introduc-
tion of new code, however, is a fault prone process just
as was the initial code generation. Faults may well bc
injected during this evolutionary process.

Code does not always change just to fix faults that
have been isolated in it. Some changes to code during its
evolution represent enhancements, design modifications
or changes in the code in response to continually evolv-
ing requirements. These incremental code enhancements
may also result in the introduction of still more faults.

Thus, as a system progresses through a series of builds,
the fault index of each program module that has been
altered must also change. We will see that the rate of
change in the system fault index will serve as a good
index of the rate of fault introduction.

The general notion of software test is to make the
rate of fault removal exceed the rate of fault introduc-
tion. In most cases, this is probably true [Muns97].
Some changes are rather more heroic than others. Dur-
ing these more substantive change cycles, it is quite pos-
sible that the actual number of faults in the system will
rise. We would be very mistaken, then, to assume that
software test will monotonically reduce the number of
faults in a system. This will only be the case when the
rate of fault removal exceeds the rate of fault introduc-
tion. The rate of fault removal is relatively easy to
measure. The rate of fault introduction is much more
tenuous. This fault introduction process is directly re-
lated to two measures that we can take on code as it
evolves, fault deltas and net fault change (NFC).

In this investigation we establish a methodology
whereby code can be measured from one build to the
next, a measurement baseline. We use this measurement
baseline to develop an assessment of the rate of change
to a system as measured by our fault. From this change
process we are then able to derive a direct measure of the
rate of fault introduction based on changes in the soft-
ware from onc build to the next. Finally we examine
data from an actual system on which faults may bc
traced to specific build increments to assess the predicted
rate of fault introduction with the actual.

“t.
4

A major objective of this study is to identify a corn- another point is chosen, the exact same picture of soft-
plete software system on which every version of every ware evolution emerges, only the perspective changes.
module has been archived together with the faults that The individual points involved in measuring software
have been recorded against the system as it evolved. For evolution are individual builds of the system.
our purposes, the Cassini Orbiter Command and Data For each raw metric in the baseline build, we may
Subsystem at JPL met all of our objectives. On the first compute a mean and a standard deviation. Denote the
build of this system there were approximately 96K vector of mean values for the base]inc build as ~“ and
source]ineS Ofcode 111i3pprOXlltlW31y 750 prOgram mod- the vector of standard deviations as s B. The standard-
ules. On the last build there were approximately 110K ized baseline metric values for any module j in an arbi-
lines of source code in approximately 800 program mod- trary build i, then, may bc derived from raw metric val-
ules. As the system progressed from the first to the last Uesas
build there were a total of 45,200 different versions of ~R,i

these modules. On the average, then, each module pro- R,i _ I
– i;

gressed through an average of 60 evolutionary steps or
z] – s;

versions. For the purposes of this study, the Ada pro- Standardizing the raw metrics makes them more
gram module is a procedure or function. it is the small- tractab]e. It now permits the comparison of metric val-
est unit of the Ada language structure that may be mess- Ues from one build to the next. From a software engi-
ured. A number of modules present in the first build of neering perspective, there arc simply too many metrics
the system were removed on subsequent builds. Simi- collected on each module over many builds. We need to
larly, a number of modules were added. reduce the dimensionality of the problem. Wc have suc-

The Cassini CDS dots not represent an extraordi- Cessfu]ly used principal components analysis for rcduc-
nary software system. It is quite typical of the amount of ing the dimensionality of the problem [Muns90a,
change activity that will occur in the development of a Khos92]$ The principal components technique will
system on the order of 100 KLOC. It is a non-trlwal reduce a set of highly correlated metrics to a much
measurement problem to track the system as it evolves. smallerset of uncorre]ated or orthogonal measures. Onc
Again, there are two different sets of IneaSUrement ac- of the products of the principal components technique is
tivities that must occur at once. we are interested the an orthogonal transformation matrix T that will send the
changes in the source code and we are interested in the standardized scores (the matrix z) onto a reduced set of
fault reports that are being filed against each module, domain scores thusly, d = ZT.

In the same manner as the baseline means and stan-
2. A MEASUREMENT BASELINE dard deviations were used to transform the raw metric of

The measurement of an evolving software system
any build relative to a baseline build, the transformation

through the shifting sands of time is not an easy task, matrix TB derived from the baseline build will be used

Perhaps one of the most difficult issues relates to the in subsequent builds to transform standardized metric

establishment of a baseline against which the evolving values obtained from that build to the reduced set of do-

systems may be compared. This problem is very similar main metrics as follows: d *“ = z ‘“’ T*, Whm z ‘“ are

to that encountered by the surveying profession. If WC the standardized metric values from build i base]ined on
were to buy a piece of property, there are certain physi- build B.
cal attributes that we would like to know about that Another artifact of the principal components analy-
property. Among these properties is the topology of the sis is the set of eigenvalues that are generated for each of
site. To establish the topological characteristics of the the new principal components. Associated with each of
land, we will have to seek out a benchmark. ‘his the new measurement domains is an eigenvalue, i .
benchmark represents an arbitrary point somewhere on These eigenvalues are large or small varying directly
the subject property. The distance and the elevation of with the proportion of variance explained by each prin -
every other point on the property may then be estab-
lished in relation to the measurement baseline. Interest-

cipal component. We have successfully exploited these
eigenvalues to create the fault index, p , that is the

ingly enough, we can pick any point on the property, .
establish a new baseline, and get exactly the same topol- ‘elghted

sum of the domain metrics to wit:

ogy for the property. The property does not change.
Only our perspective changes.

pi =50+10 ~A,d, , where m is the dimensionality of
]=1

When measuring software evolution, We need tO the reduced metric set [Mun+)oa]

establish a measurement baseline for this same purpose As was the case for the standardized metrics and the
[Niko97, Muns96a]. We need a fixed point against domain metrics, the fault index maybe baselined as WCII,
which all others can be compared. our measurement using the eigenva]ues and the baselined domain values:
baseline also needs to maintain the property that, when

:
.

.

If the raw metrics that are used to construct the fault
index are carefully chosen for their relationship to soft-
ware faults then the fault index will vary in exactly the
same manner as the faults [Muns95]. The fault index is
a very reliable fault surrogate. Whereas we cannot
measure the faults in a program directly we can measure
the fault index of the program modules that contain the
faults. Those modules having a large fault index will
ultimate]y be found to bc those with the largest number
of faults [Muns92].

3. SOFTWARE EVOLUTION

A software system consists of one or more software
modules. As the system grows and modifications are
made, the code is recompiled and a new version, or
build, is created. Each build is constructed from a set of
software modules. The new version may contain some
of the same modules as the previous version, some en-
tirely new modules and it may even omit some modules
that were present in an earlier version. Of the modules
that are common to both the old and new version, some
may have undergone modification since the last build.
When evaluating the change that occurs to the system
between any two builds (software evolution), we are
interested in three sets of modules. The first set, M ~, is

the set of modules present in both builds of the system.
These modules may have changed since the earlier ver-
sion but were not removed. The second set, M*, is the

set of modules that were in the early build and were re-
moved prior to the later build. The final set, M ~, is the

set of modules that have been added to the system since
the earlier build,

The fault index of the system Ri at build i, the early
build, is given by

Ceu. (KM.

Similarly, the fault index of the system ~’ at build j, the
later build is given by

The later system build is said to be more fault prone if
Rj>Ri.

As a system evolves through a series of builds, its
fault burden will change. This burden may be estimated
by a set of software metrics. One simple assessment of
the size of a software system is the number of lines of
code per module. However, using only one metric may
neglect information about the other complexity attributes
of the system, such as control flow and temporal com-

plexity. By comparing successive builds on their domain
metrics it is possible to see how these builds either in-
crease or decrease based on particular attribute domains.
Using the fault index, the overall system fault burden can
be monitored as the system evolves.

Regardless of which metric is chosen, the goal is the
same. We wish to assess how the system has changed,
over time, with respect to that particular measurement.
The concept of a code delta provides this information. A
code delta is, as the name implies, the difference be-
tween two builds as to the relative complexity metric.

The change in the fault in a single module between
two builds may be measured in one of two distinct ways.
First, we may simply compute the simple difference in
the module fault index between build i and build j. We
have called this value the fault delta for the module m, or
~l.j=p;–p:,. A limitation of measuring fault deltas isn,
that it doesn’t give an indicator as to how much change
the system has undergone. If, between builds, several
software modules are removed and are replaced by mod-
ules of roughly equivalent complexity, the fault delta for
the system will be close to zero. The overall complexity
of the system, based on the metric used to compute del-
tas, will not have changed much. However, the reliabil-
ity of the system could have been severely affected by
the replacing old modules with ncw ones. What we need
is a measure to accompany fault delta that indicates how
much change has occurred.

The absolute value of the fault delta is a measure of
code churn. In the case of code churn, what is important
is the absolute measure of the nature that code has been
modified. From the standpoint of fault insertion, re-
moving a lot of code is probably as catastrophic as add-
ing a bunch. The new measure of net fault change
(NFC), x , for module m is simply

~:J=16:’l=lp:,,-p,,Jl

The total change of the system is the sum of the
fault delta’s for a system between two builds i and j is
given by

Similarly, the NFC of the same system over the same
builds is

With a suitable baseline in place, and the module
sets defined above, it is now possible to measure soft-
ware evolution across a full spectrum of software met-
rics. We can do this first by comparing average metric
values for the different builds. Secondly, we can meas-
ure the increase or decrease in system complexity as
measured by a selected metric, fault delta, or we can

....
.

measure the total amount of change the system has un-
dergone between builds, net fault change.

4. OBTAINING AVERAGE BUILD
VALUES

One synthetic software measure, fault index, has
clearly been established as a successful surrogate meas-
ure of soflware faults [Muns90a]. It seems only reason-
able that we should use it as the measure against which
we compare different builds. Since the fault index is a
composite measure based on the raw measurements, it
incorporates the information represented by LOC, V(g),

q,> q,, and all the other raw nletrics of interest. The
fault index is a single value that is representative of the
complexity of the system which incorporates alI of the
software attributes we have measured (e.g. size, control
flow, style, data structures, etc.).

By definition, the average fault index, ~, of the

baseline system will be

P --+$3 J=50,
—R_

where ~B is the cardinality of the set of modules on
build B, the baseline build. The fault index for the base-
line build is calculated from standardized values using
the mean and standard deviation from the baseline met-
rics. The fault indices are then scaled to have a mean of
50 and a standard deviation of 10. For that reason, the
average fault index for the baseline system will always
be a fixed point. Subsequent builds are standardized
using the means and standard deviations of the metrics
gathered from the baseline system to allow comparisons.
The average fault index for subsequent builds is given by

where N‘ is the cardinal ity of the set of program mod-

ules in the k ‘“ build and p i“~ is the baselined fault in-

dex for the i’” module of that set.
As the code is modified over time, faults will be

found and fixed. However, new faults will be introduced
into the code as a result of the change. In fact, this fault
introduction process is directly proportional to change in
the program modules from one version to the next. As a
module is changed from one build to the next in response
to evolving requirements changes and fault reports, its
measurable software attributes will also change. Gener-
ally, the net effect of a change is that complexity will
increase. Only rarely wilI its complexity decrease.

5. DEFINITION OF A FAULT

Unfortunately there is no particular definition of
precisely what a software fault is. This makes it difficult

to develop meaningful associative models between faults
and metrics. In calibrating our model, we would like to
know how to count faults in an accurate and repeatable
manner. In measuring the evolution of the system to talk
about rates of fault introduction and removal, we meas-
ure in units to the way that the system changes over time.
Changes to the system are visible at the module level,
and we attempt to measure at that level of granularity.
Since the measurements of system structure are collected
at the module level (by module we mean procedures and
functions), we would like information about faults at the
same granularity. We would also like to know if there
are quantities that are related to fault counts that can be
used to make our calibration task easier.

Following the second definition of fault in [IEEE83,
IEEE88], we consider a fault to be a structural imper-
fection in a software system that may lead to the sys-
tem’s eventually failing. In other words, it is a physical
characteristic of the system of which the type and ex-
tent may be measured using the same ideas used to
measure the properties of more traditional physical sys-
tems. Faults arc introduced into a system by people
making errors in their tasks - these errors may bc errors
of commission or errors of omission. In order to count
faults, we needed to develop a method of identification
that is repeatable, consistent, and identifies faults at the
same level of granularity as our structural measurements.
Faults may be local – for instance, a system might con-
tain an implementation fault affecting only onc module
in which the programmer incorrectly initializes a vari-
able local to the routine. Faults may also span multiple
modules - for instance, each module containing an in-
clude file with a particular fault would have that fault. In
identifying and counting faults, we must deal with both
types of faults. Details of the fault counting and identifi-
cation rules developed for this study arc given in
[Niko97a, Niko98]

In analyzing the flight software for the CASSINI
project the fault data and the source code change data
were available from two different systems. The problem
reporting information was obtained from the JPL institu-
tional problem reporting system. Failures were recorded
in this system starting at subsystem-level integration, and
continuing through spacecraft integration and test, Fail-
ure reports typically contain descriptions of the failure at
varying levels of detail, as well as descriptions of what
was done to correct the fault(s) that caused the failure.
Detailed information regarding the underlying faults
(e.g., where were the code changes made in each af-
fected module) is generally unavailable from the prob-
lem reporting system.

The entire source code evolution history could be
obtained directly from the Software Configuration Con-
trol System (SCCS) files for all versions of the flight
software. The way in which SCCS was used in this de-
velopment effort makes it possible to track changes to

,.
#

the system at a module level in that each SCCS file
stores the baseline version of that file (which may con-
tain one or more modules) as well as the changes re-
quired to produce each subsequent increment (SCCS
delta) of that file. When a module was created, or
changed in response to a failure report or engineering
change request, the file in which the module is contained
was checked into SCCS as a new delta, This allowed us
to track changes to the system at the module level as it
evolved over time. For approximately 10% of the failure
reports, we were able to identify the source file incre-
ment in which the fault(s) associated with a particular
failure report were repaired. This information was avail-
able either in the comments inserted by the developer
into the SCCS file as part of the check-in process, or as
part of the set of comments at the beginning of a module
that track its development history.

Using the information described above, we per-
formed the following steps to identify faults. First, for
each problem report, we searched all of the SCCS files
to identify all modules and the increment(s) of each
module for which the software was changed in response
to the problem report, Second, for each increment of
each module identified in the previous step, we assumed
as a starting point that all differences between the incre-
ment in which repairs are implemented and the previous
increment are duc solely to fault repair. Note that this is
not necessarily a valid assumption - developers may be
making functional enhancements to the system in the
same increment that fault repairs are being made. Care-
ful analysis of failure reports for which there was suffi-
cient y detailed descriptive information served to sepa-
rate areas of fault repair from other changes. However,
the level of detail required to perform this analysis was
not consistently available. Third, we used a differential
comparator (e.g., Unix di f f) to obtain the differences
between the increment(s) in which the fault(s) were re-
paired, and the immediately preceding increment(s).
The results indicated the areas to be searched for faults,

After completing the last step, we still had to iden-
tify and count the faults - the results of the differential
comparison cannot simply be counted up to give a total
number of faults. In order to do this, we developed a
taxonomy for identifying and counting faults [Niko98].
This taxonomy differs from others in that it does not
seek to identify the root cause of the fault. Rather, it is
based on the types of changes made to the software to
repair the faults associated with failure reports - in other
words, it constitutes an operational definition of a fault,
Although identifying the root causes of faults is impor-

study in a consistent manner at the appropriate level of
granularity.

6. THE RELATIONSHIP BETWEEN
FAUI.TS AND CODE CHANGES

Having established a theoretical relationship be-
tween software faults and code changes, it is now of in-
terest to validate this model cmpiricatly. This measure-
ment occurred on two simultaneous fronts. First, all of
the versions of all of the source code modules were
measured. From these measurements, NFC and fault
deltas were obtained for every version of every module.
The failure reports were sampled to Icad to specific
faults in the code. These faults were classified accord-
ing to the above taxonomy manually on a case by case
basis. Then wc were able to build a regression model
relating the code measures to the code faults.

The Ada source code modttlcs for all versions of
each of these modules were systematically reconstructed
from the SCCS code deltas. Each of these module ver-
sions was then measured by the UX-Metric analysis tool
for Ada [SETL93]. Not all metrics provided by this tool
were used in this study. Only a subset of these actually
provide distinct sources of variation [Khos90]. The spe-
cific metrics used in this study arc shown in Table 1.

Metrics I Definition I

‘n, Count of unique operators [Ha177] I
I ‘n, I

Count of unique operands I
~, I Cornrtoftotd opmtors

1

N, Count of total operands
1

PIR Purity ratio: ratio of Halstead’s N to totat program
“C-L..* -..

v(g) McCabe’s cyclomatic complexity
Depth Maximum nesting level of program blocks

;ting level of program blocksAveDcpth Average nes
LOC Number of tines of code
Fllk Number of blank lines

I Crnt Count of comments
Cn)tWds Total words used in all comments I

~

Count of executable statements
Number of 10 ical source statements
Number of b sical source statements
Number of non-executable statements
Average number of lines of code between references

I VI I Average variable name length I
Table 1. Software Metric Definitions

tant in- improving ‘the development process [Ch;192,
IEEE93], it is first necessary to identify the faults. We do To establish a baseline sys[em, all of the metric data

not claim that this is the only way to identify and count for the module versions that were members of the first

faults, nor do wc claim that this taxonomy is complete. build of CDS were then analyzed by our PCA-FI tool.

However, we found that this taxonomy allowed us to This tool is designed to compute fault indices either from

successfully identify faults in the software used in the a baseline system or from a system being compared to

.

the baseline system. In that the first build of the Cassini
CDS system was selected to be the baseline system, the
PCA-FI tool performed a principal components analysis
on these data with an orthogonal varimax rotation, The
objective of this phase of the analysis is to use the prin-
cipal components technique to reduce the dimensionality
of the metric set. As may been seen in Table 2, there are
four principal components for the 18 metrics shown in
Table 1. For convenience, we have chosen to name
these principal components as Size, Structure, Style and
Nesting. From the last row in Table 2 we can see that
the new reduced set of orthogonal components of the
original 18 metrics account for approximately 8570 of
the variation in the original metric set.

AveSpan 0.852
v(g) 0.843

~,
0.635 G $-

Depth 0.617 -0.022

E

-0.337 -0.379
LOC -0.027 0.979 0,136 0.015
Cmt -0.046 0.970 0.108 0.004
Pss -0.043 0.961 0.149 0.019

CmtWds 0.033 0.931 0.058 -0.010
NonEx -0.053 0.928 0.076 -0.009

Blk 0.263 0.898 0.048 0.005
Pm -0.148 -0,198 -0.878 0.052
VI 0,372 -0.232 -0,752 0.010

AveDepth -0.000 -0.009 0.041 -0.938
% Variance 37.956 30.315 10,454 6.009

Table 2. Principal Components of Software Metrics

As is typical in the principal components analysis of
metric data, the Size domain dominates the analysis. It
alone accounts for approximately 3890 of the total varia-
tion in the original metric set. Not surprisingly, this do-
main contains the metrics of total statement count
(Srmts), logical source statements (LSS), the Halstead
lexical metric primitives of operator and operand count,
but it also contains cyclomatic complexity (V(g)). In that
we regularly find cyclomatic complexity in this domain
we are forced to conclude that it is only a simple meas-
ure of size in the same manner as statement count. The
Structure domain contain those metrics relating to the
physical structure of the program such as non-executable
statements (Nom!?x)and the program block count (lIlk).
The Style domain contains measures of attribute that are
directly under a programmer’s control such as variable
length (W) and purity ratio (WI/). The Nesting domain
consist of the single metric that is a measure of the aver-
age depth of nesting of program modules (AveDeptlr).

In order to transform the raw metrics for each mod-
ule version into their corresponding fault indices, the
means and the standard deviations must be computed.
These values will be used to transform all raw metric
values for all versions of all modules to their baselined z
score values. The transformation matrix will then map
the metric z score values onto their orthogonal equiva-
lents to obtain the orthogonal domain metric values used
in the computation of the fault index. With this
information, we can obtain baselincd fault index values
for any version of any module relative to the baseline
build. As an aside, it is not necessary that the baseline
build be the initial build. As a typical system progresses
through hundreds of builds in the course of its life, it is
worth reestablishing a baseline closer to the current sys-
tem, In any event, these baseline data are saved by the
PCA-Fl tool for use in later computation of metric val-
ues. Whenever the tool is invoked referencing the base-
line data it will automatically use these data to transform
the raw metric values given to it.

Once the baselined fault index data have been as-
sembled for all versions of all modules, it is then possi-
ble to examine some trends that have occurred during the
evolution of the system. For example, in Figure 1 the
fault index of the evolving CDS system is shown across
one of its five major builds. To compute these changing
fault index values, every development increment within
that build was identified. Then, for each increment, the
baselined fault indices of the modules in that increment
were computed. The next four increments, not shown
here, have evolutionary patterns similar to that shown in
Figure 1. It seems to be that the average fault index
most systems is a monotonically increasing function.

<400 C.)

1200,24

lCQOCU

8CC,00

6CFIW

4C400

22W.I

O.co

.2W 00

——--l .-.-----. --...-.., -..---.. --..-------, -------------- -.?—
Cumulative

NFC #-* ~

I I
A

I I J7J’J’ I

Cumulative -;
fault delta !

1

) ?&l

I , I I I

of

Figure 1. Change in the Fault Index for One Version
of CDS Flight Software

Note in Figure 1 that not all increments within a
build represent the same increase in the fault index.
Nearly one third of the total change in this version takes
place within the first 10% of the development incre-
ments. From our understanding of the relationship be-
tween the fault index and injected faults, we would ex-
pect that the magnitude of change within the first 30 in-
crements would indicate that a large number of faults

,.. .

would have been injected as a result of this activity. It is
also interesting to note that the final fault index of this
particular version is rather close to the initial fault index,
although it is quite clear from the measured activity that
a significant amount of change has occurred.

Not all program modules received the same degree
of modification as the system evolved. Some modules
changed relatively little. Figure 2 shows the net fault
change and fault delta values for a module that was rela-
tively stable over its change history. There were only
four relatively minor changes to this module. A more
typical change history is shown for another module in
Figure 3. The total net fault change for this module is
approximate] y 38. It is interesting to ncjte that the fault
delta for this module is close to zero. The fault index of
the module at the last version is very close to its original
value. This figure clearly illustrates the conceptual dif-
ferences between the two measure of net fault change
and fault delta.

[EP24
.............-.4==-=”

F-2. Change History for-Stable Modt~e

Figure 4 shows a module at the extreme end of
change history. This module has a total net fault change
value of close to 140. Also, its final fault delta value is
about 30, indicating that its fault index has also increased
significantly as it evolved. Among the three modules
whose change history is illustrated by Figures 2, 3, and
4, the latter module is the one that we focus our attention
on the most. It is the one most likely to have had signifi-
cant numbers of faults introduced into it throughout its
dramatic life.

Now let us turn our attention to the fault identifica-

against the CDS flight software during developmental
testing and system integration. Failure reports contain a
description of how the system’s behavior deviated from
expectations, the date on which the failure was observed,
and a description of the corrective action that was taken.

In relating the number of faults inserted in an incre-
ment to measures of a module’s structural change, we
had only a small number of observations with which to
work. There were three difficulties that had to be dealt
with. First, recall that for only about 10% of the failure
reports were we able to identify the module(s) that had
been changed, and in which increment those changes
were made. Although the development practices used on
this project included the placement of comments in the
source code to identify repair activities resulting from
each problem report, this requirement was not consis-
tent y enforced. Second, once a fault had been identi-
fied, it was necessary to trace it back to the increment in
which it first occurred. For some source files, there were
over 100 increments that had to be manually searched,
Since the SCCS fries for each delivered version were
available, it was possible to trace most faults back to
their point of origin, As previously noted, the principal
difficulty was the sheer volume of material that had to be
examined – this was one of the factors restricting the
number of observations that could be obtained. Third,
there were numerous instances in which the UX-Metric
analyzer that was used to obtain the raw structural meas-
urements would not measure a particular module. The
net result was that of the over 100 faults that were ini-
tially identified, there were only 35 observations in
which a fault could be associated with a particular in-
crement of a module, and with that increment’s measures
of fault delta and net fault change.

Figure 4. Change History for Frequently Changed
Module

For each of the 35 modules for which there was vi-
able fault data, there were three data points. First, we
had the number of injected faults for that module that
were the direct result of changes that had occurred on
that module between the current version that contained
the faults and the previous version that did not. Second,
we had fault delta values for each of these modules from

tion process. Over 600 failure reports were written

.

the current to the previous version. Finally, we had net
fault change values derived from the fault deltas.

Linear regression models were computed for net
fault change and fault deltas with actual code faults as
the dependent variable in both cases. Both models were
build without constant terms in that we surmise that if no
changes were made to a module, then no new faults
could be introduced. The results of the regression be-
tween faults and fault deltas were not at all surprising.
The squared multiple R for this model was 0.001, about
as close to zero as you can get. This result is directly
attributable to the non-linearity of the data. Change
comes in two flavors. Change may increase the com-
plexity of a module. Change may decrease the com-
plexity of a model. Faults, on the other hand are not
related to the direction of the change but to its intensity.
Removing masses of code from a module is just as likely
to introduce faults and adding code to it.

The regression model between net fault change and
faults is dramatically different. The regression ANOVA
for this model are shown in Table 3. Whereas fault del-
tas do not show a linear relationship with faults, net fault
change certainly does. The actual regression model is
given in Table 4. In Table 5 the regressions statistics
have been reported. Of particular interest is the Squared
Multiple R term, having a value of 0.653. This means,
roughly, that the regression model will account for more
than 65(ZOof the variation in the faults of the observed
modules based on the values of net fault change.

~a
Table 3. Regression Analysis of Variance

Effect I Coeftlcient

i 0073 i A=

Std Err
NFC 0.576

Table 4. Regression Model

R ‘=Squared multiple
N Multiple R
35 0.806 0.649

Table 5. Regression Statistics

Of course, it may be the case that both the amount
of change and the direction in which the change oc-
curred. The linear regression through the origin shown
in Tables 6, 7, and 8 below illustrates this model.

I Source I Sum.of-] DF ! Mean. I F-Ratio] P
Squares Square

Regression 367.247 2 183.623
Residual 143.753 33 4.356 +

Table 6. Regression Analysis of Variance

Effect Coefficient

:$; zi:m

Std Err
NFC 0.647
Delta 0.201

Table 7. Regression Model

Squared multiple Standard error of
N Multiple R R estimate
35 .848 .719 2,087

Table 8. Regression Statistics

We see that the model incorporating fault delta as well as
net fault change performs significantly better than the
model incorporating net fault change alone, as measured
by Squared Multiple R and Mean Sum of Squares.

We determined whether the linear regression model
which uses net fault change alone is an adequate predic-
tor at a particular significance level when compared to
the model using both net fault change and fault delta. We
used the R*-adequate test [MacD97, Net83] to examine
the linear regression models through the origin and de-
termine whether the models that depend only on struc-
tural measures are an adequate predictor. A subset of
predictor variables is said to bc R*-adequate at signifi-
cance level cxif

R;,, >1 – (1– R~,,,)(l+ d,,,), where
● R2,u~is the R* value achieved with the subset of

predictors
●

R2m, is the R* value achieved with the full set of
predictors

● dn,k= (kFk,n.k.l)/n-k-], where
● k = number of predictor variables in the

model
● n = number of observations
● F = F statistic for significance cxfor n,k de-

grees of freedom.
Table 9 below show values of R*, k, degrees of freedom,
Fk,n.k.l,dn,k,and R2,,,bfor all four linear regression models
through the origin. The number of observations, n, is 35,
and we specify a value of cx=.05.

We see in Table 9 that the value of Multiple Squared
R for the regression using only net fault change is 0.649,
and the s~o significance threshold for the net fault
change and fault delta regression model is 0.661. This
means that the regression model using only NFC is not
R* adequate when compared to the model using both net
fault change and fault delta as predictors. The amount of
change occurring between subsequent revisions and the
direction of that change both appear to be important in
determining the number of faults inserted into a system.

-
I Delta I I I I I I
Table 9. Values of Rz, DOF, k, F~,n.~.l,and dn,~for RJ

adequate Test

Finally, we examined the predicted residuals for the
linear regression models described above, Table 10 be-

I

.

low shows the results of the Wilcoxon Signed Ranks
test, as applied to the predictions for the excluded obser-
vations and the number of faults observed for each of the
two linear regression models through the origin. For
these models, about 2J3 of the estimates tend to be less
than the number of faults observed.

Plots of the predicted residuals against the actual
number of observed faults for each of the linear regres-
sion models through the origin are shown in Figures 5
and 6 below. The results of the Wilcoxon signed ranks
tests, as well as Figures 5 and 6, indicate that the predic-
tive accuracy of the regression models might be im-
proved if syntactic analyzers capable of measuring addi-
tional aspects of a software system’s structure were
available. Recall, for instance, that we did not measure
any of the real-time aspects of the system. Analyzers
capable of measuring changes in variable definition and
usage as well changes to the sequencing of blocks might
also provide more accurate measurements.

3
Sample N
Pair

Observed Neg. 25’

Faults; Pos. , oh

NFC only Ties 0’
fault est. Total 35
Observed Neg. 24’
Faults; Pos.

,,b

NFC and Ties 0’

iizz
Rank

T?T
19.20

16.92
20.36

Fault I Total I 35
Delta est. I I
a. Observed Faults > Regression n

Sum
of

Ranla

m
192.00

406,00
224.00

,del prec

-mi-
Statis-

tic
z

:2%

:lm

.—
ions

Asymp-
totic

Signifi-
cance

&?&

.136

b. Observed Faults< Regression modelpredictions
c, Observed Faults = Regression model predictions
d, Based on positive ranks

Table 10. Wilcoxon Signed Ranks Test for Linear
Regressions Through the Origin

Predicted Residuals vs. Observed Faults

Faults = bl”NFC
8

6,
*
$’
‘#Z t

%0 .’
i

‘f! ., ,; J
c “

.4 ,

.e o :’ (8
0 2 4 6 8 10 12

Number of&sawed faults - versions 2.0, 2.1s, and 2.1 b

Figure 5. Predicted Residuals vs. Number of Ob-
served Faults for Linear Regression Using NFC

Predicted Residualsvs. Observed Faults

Faulta = bl ‘NFC + b2’Fault Dalta
a.

~:: ,“’ ‘o

~:; .; I ‘

a
.4a

.0
024 ai <012

Nun’Lw ddwafved Iauks - verslcm 20, 2,1a, and 2 lb

Figure 6. Predicted Residuals vs. Number of Ob-
served Faults for Lhlear Regression with NFC and

Fault Delta

7. SUMMARY

There is a distinct anda strong relationship between
software faults and measurable software attributes. This
is in itself not a new result or observation. The most
interesting result of thisendeavor is that we also found a
strong association betweenthe fault introduction process
over the evolutionary history of a software system and
the degree of change taking place in each of the program
modules. We also foundthat the direction of the change
was significant in determining the number of faults in-
serted. Some changes will have the potential of intro-
ducing very few faultswhile others may have a serious
impact on the numl’erof latent faults. Different numbers
of faults may bc inserted,depending upon whether code
is being added to or removedfrom the system.

In order for the measurementprocess to bc meaning-
ful, fault data must be very carefully collected. In this
study, the data w e extracted ex post facto as a very

!labor intensive cf m. Since fault data cannot bc col-
lected with the same degree of automation as much of
the data on software mekicsbeing gathered by develop-
ment organizations, material changes in the software
development and soflware maintenance processes must
be made to capture Uiesefault data. Among other things,
a well defined fault standardand fault taxonomy must bc
developed and mainta~ndas part of the software devel-
opment process. Further,tlI designers and coders should
be trained in its USC,A viablestandard is one that may
be used to classifykV fault unambiguously. A viable
fault recording prows is one in which any onc person
will classify a fault wac~lythe same as any other person.

Finally, the who\endion of measuring the fault in-
troduction process is its.timate value as a measure of
software process. Thesalware engineering literature is
replete with examples of how software process im-
provement can be a$iewdthrough the use of some new
software devcloprnttt technique. What is almost absent
from the same litershreis a controlled study to validate

the fact that the ncw process is meaningful. The tech-
niques developed in this study can be implemented in a
development organization to provide a ccmsistent method
of measuring fault content and structural evolution
across multiple projects over time. We are working with
software development efforts at JPL to address the prac-
tical aspects of inserting these measurement techniques
into production software development environments.
The initial estimates of fault insertion rates can serve as a
baseline against which future projects can be compared
to determine whether progress is being made in reducing
the fault insertion rate, and to identify those development
techniques that seem to provide the greatest reduction.

ACKNOWLEDGMENTS

The research described in this paper was carried out
by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aero-
nautics and Space Administration,

REFERENCES

[Chi192] R. Chillarege, 1. 13handari, J. Chaar, M. Hal]iday,
D. Moebus, B. Ray, M.-Y. Wong, “Orthogonal Defect
Classification - A Concept for In-Process Measurement”, IEEE
Transactions on Software Engineering, November, 1992, pp.
943-946.
[Ha177] M. H. Halstead, Eletnents of Sofmare Science.
Elsevier, New York, 1977.
[IEEE83] “IEEE Standard Glossary of Software Engineering
Terminology”, IEEE Std 729-1983, Institute of Electrical and
Electronics Engineers, 1983.
[1EEE88] “IEEE Standard Dictionary of Measures to
Produce Reliable Software”, IEEE Std 982.1-1988, Institute of
Electrical and Electronics Engineers, 1989.
[IEEE93] “IEEE Standard Classification for Software
Anomalies”, IEEE Std 1044-1993, Institute of Electrical and
Electronics Engineers, 1994
[Khos90] T. M. Khoshgoftaar and J. C. Munson , “Pre-
dicting SoftwareDevelopmentErrors Using Complexity Met-
rics,” IEEE Journal on Selected Areas in Communications 8,
1990, pp. 253-261.
[Khos92] T. M. Khoshgoftaar and J. C. Munson “A
Measure of Software System Complexity and Its Relationship
to Faults,” In Proceedings of the 1992 International Sitnulation
Technology Conference, The Society for Computer Simulation,
San Diego, CA, 1992, pp. 267-272.

[MacD97] S. G. MacDonell, M. J. Shepperd, P. J. Sallis,
“Metrics for Database Systems: An Empirical Study”,
Proceedings of the Fourth International Software Metrics
Symposium, November 5-7, 1997, Albuquerque, NM, pp. 99-
107
[Muns90] J, C. Munson and T, M. Khoshgoftaar “Regres-
sion Modeling of Software Quality: An Empirical investiga-
tion,” Journal of Information and Software Technology, 32,
1990, pp. 105-114.
[Muns90a] J. C. Munson and T. M. Khoshgoftaar “The
Relative Software Complexity Metric: A Validation Study,” In
Proceedings of the Software Engineering 1990 Conference,
Cambridge University Press, Cambridge, UK, 1990, pp. 89-
102.
[Muns92] J. C. Munson and T, M. Khoshgoftaar “The De-
tection of Fault-Prone Programs,” IEEE Transactions on Soft-
ware Engineering, SE-18, No. 5, 1992,pp. 423-433.
[Muns95] J. C. Munson, “Software Measurement: Problems
and Practice,” Annals o~ Software Engineering, J. C. Bal~zer
AG, Amsterdam 1995.
[Muns96] J, C, Munson, “Software Faults, Software Failures,
and Software Reliability Modeling”, Information and Software
Technology, Dcccmber, 1996.
[Muns96a] J. C. Munson and D. S. Werries, “Measuring
Software Evolution,” Proceedings of the 1996 IEEE Interna-
tional Software Metrics Sytnposiutn , IEEE Computer Society
Press,pp.41-51.
[Muns97] J. C. Munson and G. A. Hall, “Estimating Test
Effectiveness with Dynamic Complexity Measurement:’ En~-
pirical Software Engineering Journal. Feb. 1997.
[Net83] J. Neter, W. Wasserman, M. H. Kutner, Applied
Linear Rerzression Models, Irwin: Homcwood, IL, 1983
[Niko97] A. P. Nikora, N. F. Schneidewind, J. C. Munson,
“lV&V Issues in Achieving High Reliability and Safety in
Critical Control System Software”, proceedings of the Interna-
tional Society of Science and Applied Technology conference,
March 10-12, 1997, Anaheim, CA, pp 25-30.
[Niko97a] A. P. Nikora, J. C. Munson, “Finding Fault with
Faults: A Case Study”, proceedings of the Annual Oregon
Workshop on Software Metrics, CoCur d’Alenc, ID, May 11-
13, 1997
[Niko98] A. P. Nikora, “Software System Defect Content
Prediction From Development Process And Product
Characteristics”, Doctoral Dissertation, Department of
Computer Science, University
1998.
[SETL93] “User’s Guide for
Laboratories, Mulino, OR, Cl

of Southern California, May,

UX-Metric 4.0 for Ada”, SET
SET Laboratories. 1987-1993

